Parameter estimation of the fractional-order Hammerstein–Wiener model using simplified refined instrumental variable fractional-order continuous time

نویسندگان

  • Ivan Zajic
  • Kotub Uddin
  • Keith J. Burnham
چکیده

This study proposes a direct parameter estimation approach from observed input–output data of a stochastic singleinput–single-output fractional-order continuous-time Hammerstein–Wiener model by extending a well known iterative simplified refined instrumental variable method. The method is an extension of the simplified refined instrumental variable method developed for the linear fractional-order continuous-time system, denoted. The advantage of this novel extension, compared with published methods, is that the static output non-linearity of the Wiener model part does not need to be invertible. The input and output static non-linear functions are represented by a sum of the known basis functions. The proposed approach estimates the parameters of the linear fractional-order continuous-time subsystem and the input and output static non-linear functions from the sampled input–output data by considering the system to be a multi-input–single-output linear fractional-order continuoustime model. These extra inputs represent the basis functions of the static input and output non-linearity, where the output basis functions are simulated according to the previous estimates of the fractional-order linear subsystem and the static input nonlinear function at every iteration. It is also possible to estimate the classical integer-order model counterparts as a special case. Subsequently, the proposed extension to the simplified refined instrumental variable method is considered in the classical integer-order continuous-time Hammerstein–Wiener case. In this paper, a Monte Carlo simulation analysis is applied for demonstrating the performance of the proposed approach to estimate the parameters of a fractional-order Hammerstein–Wiener output model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An optimal instrumental variable method for continuous-time fractional model identification

this paper deals with continuous-time system identification using fractional differentiation models in a noisy output context. The simplified refined instrumental variable for continuous-time systems (srivc) is extended to fractional models. Monte Carlo simulation analysis are used to demonstrate the performance of the proposed optimal instrumental variable scheme.

متن کامل

Fractional Order Generalized Thermoelastic Functionally Graded Solid with Variable Material Properties

In this work, a new mathematical model of thermoelasticity theory has been considered in the context of a new consideration of heat conduction with fractional order theory. A functionally graded isotropic unbounded medium is considered subjected to a periodically varying heat source in the context of space-time non-local generalization of three-phase-lag thermoelastic model and Green-Naghdi mod...

متن کامل

Fractional Order Glucose Insulin System Using Fractional Back-Stepping Sliding Mode Control

In this paper, based on a fractional order Bergman minimal model, a robust strategy for regulationof blood glucose in type 1 diabetic patients is presented. Glucose/insulin concentration in the patientbody is controlled through the injection under the patients skin by the pump. Many various con-trollers for this system have been proposed in the literature. However, most of the...

متن کامل

A numerical approach for variable-order fractional unified chaotic systems with time-delay

This paper proposes a new computational scheme for approximating variable-order fractional integral operators by means of finite element scheme. This strategy is extended to approximate the solution of a class of variable-order fractional nonlinear systems with time-delay. Numerical simulations are analyzed in the perspective of the mean absolute error and experimental convergence order. To ill...

متن کامل

Implicit RBF Meshless Method for the Solution of Two-dimensional Variable Order Fractional Cable Equation

In the present work, the numerical solution of two-dimensional variable-order fractional cable (VOFC) equation using meshless collocation methods with thin plate spline radial basis functions is considered. In the proposed methods, we first use two schemes of order O(τ2) for the time derivatives and then meshless approach is applied to the space component. Numerical results obtained ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017